A Tree Kernel-Based Shallow Semantic Parser for Thematic Role Extraction

نویسندگان

  • Daniele Pighin
  • Alessandro Moschitti
چکیده

We present a simple, two-steps supervised strategy for the identification and classification of thematic roles in natural language texts. We employ no external source of information but automatic parse trees of the input sentences. We use a few attribute-value features and tree kernel functions applied to specialized structured features. Different configurations of our thematic role labeling system took part in 2 tasks of the SemEval 2007 evaluation campaign, namely the closed tasks on semantic role labeling for the English and the Arabic languages. In this paper we present and discuss the system configuration that participated in the English semantic role labeling task and present new results obtained after the end of the evaluation campaign.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

برچسب‌زنی خودکار نقش‌های معنایی در جملات فارسی به کمک درخت‌های وابستگی

Automatic identification of words with semantic roles (such as Agent, Patient, Source, etc.) in sentences and attaching correct semantic roles to them, may lead to improvement in many natural language processing tasks including information extraction, question answering, text summarization and machine translation. Semantic role labeling systems usually take advantage of syntactic parsing and th...

متن کامل

برچسب‌زنی نقش معنایی جملات فارسی با رویکرد یادگیری مبتنی بر حافظه

Abstract Extracting semantic roles is one of the major steps in representing text meaning. It refers to finding the semantic relations between a predicate and syntactic constituents in a sentence. In this paper we present a semantic role labeling system for Persian, using memory-based learning model and standard features. Our proposed system implements a two-phase architecture to first identify...

متن کامل

Engineering Tree Kernels for Semantic Role Labelling Systems

Semantic Role Labelling (SRL) is a complex Natural Language Processing (NLP) task that has received a lot of attention in the latest years. An accurate shallow semantic parser, that recognized predicate-argument structures in a sentence and assigned each argument a semantic (or thematic) role, could be a key factor of larger NLP architectures, human-machine interaction (e. g. high level, semant...

متن کامل

Tree kernel-based semantic role labeling with enriched parse tree structure

Shallow semantic parsing assigns a simple structure (such as WHO did WHAT to WHOM, WHEN, WHERE, WHY, and HOW) to each predicate in a sentence. It plays a critical role in event-based information extraction and thus is important for deep information processing and management. This paper proposes a tree kernel method for a particular shallow semantic parsing task, called semantic role labeling (S...

متن کامل

Exploiting Rich Syntactic Information for Relation Extraction from Biomedical Articles∗

This paper proposes a ternary relation extraction method primarily based on rich syntactic information. We identify PROTEIN-ORGANISM-LOCATION relations in the text of biomedical articles. Different kernel functions are used with an SVM learner to integrate two sources of information from syntactic parse trees: (i) a large number of syntactic features that have been shown useful for Semantic Rol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007